cates, was supposed to be isomorphous with $\mathrm{NiSnCl} \mathrm{C}_{6} .6 \mathrm{H}_{2} \mathrm{O}$, with one formula unit per rhombohedral unit cell, and consequently, the water octahedron surrounding the Cu^{2+} ion was considered trigonally distorted. With such assumption, Bleany \& Ingram (1950) used mixed crystals of $\mathrm{CuSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{ZnSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in their study of paramagnetic resonance, and Abragam \& Pryce (1950) gave theoretical interpretation of the results thus obtained, assuming that the Cu^{2+} ion was subjected to a ligand field of trigonal symmetry. The $\mathrm{Cu}: \mathrm{Zn}$ ratio in the mixed crystal used in the experiment has not been mentioned in the paper of Bleaney \& Ingram. Assuming that the Cu^{2+} ion concentration was very low, it is quite probable that the structure of the mixed crystal resembled that of $\mathrm{ZnSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and consequently the Cu^{2+} ions may indeed have been in a ligand field with trigonal symmetry. In that case, there should be no objection to the said studies, except that the results obtained do not relate to the actual ligand field in $\mathrm{CuSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. A careful study of paramagnetic resonance with the 'undiluted' salt would then be worthwhile. It would also be interesting to prepare mixed crystals with different $\mathrm{Cu}: \mathrm{Zn}$ ratio, and find out for what maximum concentration of Cu^{2+} the structure resembles that of $\mathrm{ZnSiF}_{6} .6 \mathrm{H}_{2} \mathrm{O}$.

Fig. 1 shows a portion of the structure in orthogonal projection on the $x z$ plane. One of each kind of hydrogen atom is identified. The bonds $O(1) \cdots F(1)$ and $\mathrm{O}(1) \cdots \mathrm{F}(2)$ follow the same pattern as in $\mathrm{CoSiF} \mathrm{F}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. But while each of $\mathrm{F}(1), \mathrm{F}(2)$ and $\mathrm{F}(3)$ takes part in two hydrogen bonds, $\mathrm{F}(4)$ seems to participate in only one; there appears an $\mathrm{O}(3) \cdots \mathrm{O}(4)$ bond instead. This makes the hydrogen bond configuration in this case rather different than that in $\mathrm{CoSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, where each F atom participates in two hydrogen bonds.

References

Abragam, A. \& Pryce, M. H. L. (1950). Proc. Phys. Soc. A63, 409-411.
Bleaney, B. \& Ingram, D. J. E. (1950). Proc. Phys. Soc. A 63, 408-409.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104 109.

Fischer, M. S., Templeton, D. H. \& Zalkin, A. (1970). Acta Cryst. B26, 1392-1397.
Pauling, L. (1930). Z. Kristallogr. 72, 482-492.
Ray, S., Zalkin, A. \& Templeton, D. H. (1973). Acta Cryst. B29, 2741-2747.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

A Neutron Diffraction Study of Potassium and Rubidium Hydrogen Oxydiacetate. The Dynamics of Their Hydrogen Bonds

By J. Albertsson and I. Grenthe
Inorganic Chemistry 1 and Physical Chemistry 1, Chemical Center, University of Lund, P.O.B. 740, S-220 07 Lund, Sweden

(Received 6 August 1973; accepted 8 August 1973)
The crystal structures of $\mathrm{KHO}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}$ and $\mathrm{RbHO}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}$ have been investigated by neutron diffraction to obtain information about the hydrogen-bond systems in these compounds. The structures were refined to $R=0.036$ and $R=0.030$, respectively. The positions of the heavy atoms are in agreement with earlier X-ray investigations. Both compounds consist of hydrogen oxydiacetate chains crosslinked by the alkali metal ion. The hydrogen bond ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$) in the potassium compound is asymmetric and of length 2.476 (2) \AA. The angle $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ is $174 \cdot 2$ (3) $)^{\circ}$ and the covalent $\mathrm{O}-\mathrm{H}$ bond length 1.152 (3) \AA. In the rubidium compound the bond is symmetric. Its length is 2.449 (3) \AA and the angle $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ is $175 \cdot 0(4)^{\circ}$. Analysis of the thermal motion parameters of the acid hydrogen atom indicates that, in $\mathrm{RbHO}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}$, it vibrates anharmonically in a broad, single, and symmetric potential-energy well. The asymmetric $\mathrm{O}-\mathrm{H}$ stretching frequency is less than $1000 \mathrm{~cm}^{-1}$ in both compounds.

Introduction

In a study of the hydrogen-bond system in the alkali hydrogen salts of oxydiacetic acid the crystal and molecular structures of $\mathrm{MHO}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}, \mathrm{M}=\mathrm{Na}, \mathrm{K}$, and Rb , have been determined from X-ray intensities
(Albertsson, Grenthe \& Herbertsson, 1973a, b). The compounds are hereafter denoted NaHOXY, KHOXY and RbHOXY, respectively. NaHOXY and KHOXY are isostructural and crystallize in the monoclinic space group $P 2_{2} / c$ but RbHOXY is tetragonal with space group $\overline{1} \overline{4} 2 d$. Both types of structures contain chains of
oxydiacetate residues linked end-to-end by a short hydrogen bond of length 2.480 (2)* and 2.451 (2) \AA in KHOXY and RbHOXY, respectively. The X-ray results indicate an asymmetric hydrogen bond in NaHOXY and KHOXY. The hydrogen-oxygen bond distances are 1.05 (3) and 1.44 (3) \AA in KHOXY. The hydrogen atoms were located in the RbHOXY structure but could not be refined. Since there is a twofold axis between the hydrogen-bonded oxygen atoms in RbHOXY the bond must be symmetric with the hydrogen atom situated either on this axis or statistically distributed around it. The difficulty in making an experimental distinction between the two cases has been discussed extensively by Ibers (McGaw \& Ibers, 1963; Ibers, 1964). A neutron diffraction study of KHOXY and RbHOXY has been made in order to get more accurate parameters for the hydrogen atoms to enable a better elucidation of the hydrogen bonds in the two types of structures. Crystal data for the compounds are given in Table 1.

Table 1. Crystal data

	KHOXY Monoclinic	RbHOXY Tetiagonal
Crystal system	$P 2_{1} / c$	$I \overline{42 d}(2) \AA$
Space group	$7.102(2) \AA$	$8.4814(2) \AA$
a	$10.451(1)$	$8.4814(2)$
b	$8.558(2)$	$18.0985(9)$
c	$101 \cdot 44(2)^{\circ}$	-
β	$622.5 \AA^{3}$	$1301.9 \AA^{3}$
V	4	8
Z	$1.837 \mathrm{~g} \mathrm{~cm}^{-3}$	$2.230 \mathrm{~g} \mathrm{~cm}^{-3}$

Experimental

Suitable single crystals of KHOXY were grown by slow evaporation at room temperature of an aqueous solution of potassium hydrogen oxydiacetate. To prepare stout prismatic crystals of RbHOXY a water solution of rubidium hydrogen oxydiacetate had to be evaporated very slowly at a temperature above $50^{\circ} \mathrm{C}$. At lower temperatures only thin plates were obtained.

The intensities of both compounds were recorded at room temperature with the computer controlled Hilger \& Watts four-circle diffractometer at the Swedish Atomic Energy reactor R2, Studsvik. The wavelength was $1.210 \AA$. A region of reciprocal space out to $\sin \theta / \lambda$ $=0.64 \AA^{-1}$ for KHOXY and $0.69 \AA^{-1}$ for RbHOXY was examined with the $\omega-2 \theta$ step ccan technique. About 15 min were spent measuring each reflexion. The neutron flux at the specimens was about 10^{6} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. The maximum number of counts obtained for a reflexion was 53000 for KHOXY and 246000 for RbHOXY. The crystals were arbitrarily mounted on the diffractometer to avoid errors caused by multiple diffraction. Two standard reflexions per structure were measured at regular intervals to provide a check on

[^0]crystal and electronic stabilities. No significant variations were observed. The intensities were corrected for Lorentz and absorption effects. Corrections for secondary extinction were made in the refinement process.

1220 independent reflexions with intensities greater than $2 \sigma_{c}(I)$ were measured for K HOXY from a crystal of volume $30.5 \mathrm{~mm}^{3} .21$ of these were badly centred in the scan interval and had their two background intensities differing by up to 50%. These reflexions were discarded. The standard deviations $\sigma_{\mathrm{C}}(I)$ were estimated from counting statistics. The shape of the crystal could be described with 13 rational boundary planes. The linear absorption coefficient $1.40 \mathrm{~cm}^{-1}$ was calculated with a value of 34 barns for the incoherent scattering cross section for hydrogen. The resulting transmission factors varied from 0.53 to 0.76 .

1013 reflexions were measured for RbHOXY. 100 of these had intensities less than $2 \sigma_{\mathrm{C}}(I)$. The crystal volume was $48.6 \mathrm{~mm}^{3}$ and the shape of this crystal could be described with 15 boundary planes. Since two of these boundary planes were large and parallel [010) and ($0 \overline{0} 0)$] an experimental linear absorption coefficient could be determined. The value obtained was $1.31 \mathrm{~cm}^{-1}$ corresponding to an incoherent scattering cross section for hydrogen of 42 barns. The transmission factors varied from 0.599 to 0.752 . The space group extinctions $h k l: h+k+l \neq 2 n$ and $h h l$: $2 h+l \neq 4 n$ of RbHOXY were checked by recording the intensities of all possible reflexions in the first octant with $\sin \theta / \lambda \leq 0.35 \AA^{-1}$. No violations were found.

Refinement

The structures were refined by minimizing the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. Each reflexion was assigned a weight w with $w^{-1}=\sigma^{2}\left(\left|F_{o}\right|\right)=\sigma_{C}^{2}\left(\left|F_{o}\right|^{2}\right) / 4\left|F_{o}\right|^{2}+C\left|F_{o}\right|^{2}$ where C is adjusted so that the average value of $\sum w^{\prime}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ is fairly constant in different $\left|F_{0}\right|$ and $\sin \theta$ intervals. The convergence was followed by the conventional R and by the weighted $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$. Preliminary values of the atomic parameters were taken from the X-ray structures. The 913 non-zero values of $\left|F_{o}\right|^{2}$ and $\sigma_{C}\left(\left|F_{o}\right|^{2}\right)$ measured for RbHOXY (reflexions with $0 \leq h, k \leq 11$ and $0 \leq l \leq 24$) were reduced to a set of 486 independent data ($h \leq k$) by mean-value calculations.

Corrections for extinction were made with the expression $\left.\quad\left|F_{o}\right|_{\text {corr }}=\left|F_{o}\right|\left[1+\left(\bar{T} 2\left|F_{c}\right|^{2} g\right)^{3} / V^{2} \sin 2 \theta\right)\right]^{1 / 4}$ where g is the extinction parameter which is a constant in the isotropic case or derived from a tensor in the anisotropic case (Coppens \& Hamilton, 1970). The units used for \bar{T}, λ, and V are cm , \AA, and \AA^{3}, respectively. The mean path lengths $\bar{T}=-\ln A / \mu$, where A is the transmission factor and μ the linear absorption coefficient, do not vary much between the equivalent reflexions $h k l$ and $k h l(h, k, l \geq 0)$ for the actual RbHOXY crystal so mean values of \bar{T} were also calculated and used for isotropic extinction correction of the derived set of independent data.

With anisotropic thermal parameters assigned to all atoms of KHOXY and with $C=0.0009$ in the weight function, $R=0.038, R_{w}=0.046$ were obtained with an isotropic extinction correction. The value of the refined parameter g is 34800 (1200). This corresponds to a mosaic spread parameter of approximately $1.67^{\prime \prime}$ or a domain size of $4.2 \mu \mathrm{~m}$ depending on whether a Zachariasen (1967) Type I or Type II description is used. Both a Type I and a Type II anisotropic extinction correction converged to $R=0.036, R_{w}=0.044$. Corlesponding positional and thermal parameters in the two models agree within one standard deviation. In the Type I calculation mosaic spread parameters of $1 \cdot 95,1 \cdot 70$, and $1 \cdot 04^{\prime \prime}$ were obtained. The Type-II calculation gave domain-size parameters of $3 \cdot 34,4 \cdot 13$, and $5 \cdot 25 \mu \mathrm{~m}$. For this crystal extinction is probably affected both by mosaic spread and domain size and a proper description would lie between the Type-I and Type-II models. Arbitrarily the results of the Type-I calculations were chosen. The extinction correction factor as given above is for the majority of the reflexions in the range $1 \cdot 00-1 \cdot 30$ but values as high as 2.88 (for the reflexion 020) are obtained.

Isotropic extinction correction, anisotropic thermal parameters, and $C=0.0010$ in the weight function gave $R=0.030$ and $R_{w}=0.039$ for RbHOXY. The refined value of g is $1210(150)$ corresponding to a mosaic spread parameter of $50^{\prime \prime}$ (Type I) or a domain size of $15 \mu \mathrm{~m}$ (Type II). The extinction correction factor is, for all reflexions except three, in the range $1 \cdot 00-1 \cdot 10$. The maximum value is 1.23 .

Table 2. Atomic coordinates with standard deviations $\left(\times 10^{5}\right)$

KHOXY

	x	y	z
K	26758 (29)	796 (20)	10164 (28)
$\mathrm{O}(1)$	17593 (18)	26223 (13)	5303 (18)
$\mathrm{O}(2)$	-7037 (20)	11398 (13)	16672 (19)
$\mathrm{O}(3)$	-22686 (20)	28305 (14)	23781 (19)
$\mathrm{O}(4)$	45238 (21)	15985 (13)	-7607 (19)
$\mathrm{O}(5)$	53873 (19)	35020 (14)	- 15629 (18)
C(1)	3121 (16)	32565 (11)	11386 (15)
C(2)	-9636 (15)	22979 (10)	17742 (14)
C(3)	30089 (16)	34820 (11)	-90 (15)
C(4)	43909 (15)	27631 (11)	-8221 (14)
H(1)	-34964 (37)	20689 (28)	29140 (34)
$\mathrm{H}(2)$	-5976 (41)	38073 (31)	1998 (42)
H(3)	9244 (45)	39153 (31)	20932 (43)
H(4)	21940 (45)	41573 (32)	-8590 (45)
$\mathrm{H}(5)$	38390 (45)	40286 (32)	9813 (43)

RbHOXY

	x	y	z
Rb	0	0	$11583(10)$
$\mathrm{O}(1)$	$25045(23)$	$\frac{1}{4}$	$\frac{1}{8}$
$\mathrm{O}(2)$	$9914(17)$	$25565(25)$	$-362(7)$
$\mathrm{O}(3)$	$32482(18)$	$26137(22)$	$-6712(7)$
$\mathrm{C}(1)$	$34501(14)$	$25681(19)$	$6104(5)$
$\mathrm{C}(2)$	$24266(16)$	$25743(14)$	$-723(6)$
$\mathrm{H}(1)$	$\frac{1}{4}$	$26763(50)$	$-\frac{1}{8}$
$\mathrm{H}(2)$	$42406(43)$	$15502(55)$	$580(17)$
$\mathrm{H}(3)$	$41744(47)$	$36313(52)$	$609(19)$

The refinement of RbHOXY was performed assuming the hydrogen atoms $\mathrm{H}(1)$ linking the oxydiacetate residues into chains to be situated on the twofold axes between the residues. An attempt to refine a model

Table 3. Thermal parameters with standard deviations $\left(\times 10^{5}\right)$
The form of the temperature factor is $\exp \left(-\beta_{11} h^{2}-2 \beta_{12} h k \ldots\right)$. The root-mean-square components R_{t} with standard deviations ($\times 10^{3} \AA$) of thermal displacement along the ellipsoid axes are also listed.

KHOXY	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}
K	1065 (41)	355 (18)	949 (31)	79 (20)	449 (29)	36 (18)	134 (4)	146 (3)	194 (3)
$\mathrm{O}(1)$	935 (26)	355 (13)	1150 (23)	76 (14)	659 (20)	33 (13)	111 (3)	141 (3)	214 (2)
$\mathrm{O}(2)$	1163 (28)	331 (13)	1197 (23)	-3 (14)	593 (20)	42 (13)	134 (3)	144 (2)	216 (2)
$\mathrm{O}(3)$	998 (28)	440 (14)	1193 (24)	-65 (13)	724 (21)	-114 (12)	112 (3)	153 (3)	222 (2)
$\mathrm{O}(4)$	1237 (29)	346 (14)	1244 (24)	131 (14)	815 (21)	66 (13)	118 (2)	141 (3)	231 (2)
$\mathrm{O}(5)$	1021 (28)	421 (13)	1084 (23)	42 (13)	646 (20)	80 (12)	119 (3)	135 (2)	200 (2)
C(1)	889 (23)	324 (11)	1003 (19)	9 (12)	558 (17)	-46 (11)	113 (3)	135 (2)	200 (2)
C(2)	713 (21)	348 (12)	717 (16)	-9 (10)	371 (14)	-53 (9)	109 (2)	138 (2)	169 (2)
C(3)	926 (23)	333 (11)	922 (19)	13 (11)	532 (17)	-16 (10)	117 (3)	136 (2)	194 (2)
C(4)	706 (22)	349 (12)	733 (17)	43 (10)	331 (15)	24 (9)	115 (2)	139 (2)	168 (2)
$\mathrm{H}(1)$	1406 (53)	714 (26)	1287 (41)	77 (27)	424 (38)	-185 (25)	166 (4)	198 (3)	227 (4)
H(2)	1683 (58)	859 (30)	1894 (57)	426 (33)	884 (48)	565 (33)	169 (4)	179 (4)	300 (4)
H(3)	2124 (66)	806 (31)	1938 (57)	-515 (36)	1075 (51)	-634 (34)	161 (4)	178 (4)	326 (4)
H(4)	2039 (65)	913 (33)	2047 (57)	663 (38)	1209 (51)	676 (37)	161 (4)	178 (4)	326 (4)
H(5)	2132 (66)	934 (34)	1824 (55)	- 547 (37)	961 (52)	-654 (35)	168 (4)	192 (4)	312 (4)
RbHOXY									
	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}
Rb	759 (21)	891 (23)	217 (6)	29 (16)	0	0	166 (2)	181 (2)	190 (3)
$\mathrm{O}(1)$	651 (17)	1103 (22)	102 (4)	0	0	-20 (9)	130 (3)	154 (2)	201 (2)
$\mathrm{O}(2)$	758 (16)	1584 (26)	147 (3)	16 (20)	-38(6)	7 (10)	150 (2)	171 (2)	240 (2)
$\mathrm{O}(3)$	1041 (19)	1094 (20)	110 (3)	95 (22)	67 (6)	-2 (7)	130 (2)	190 (2)	207 (2)
C(1)	669 (13)	1121 (17)	109 (3)	-2 (17)	28 (4)	-29 (6)	131 (2)	158 (2)	203 (2)
C(2)	752 (13)	767 (13)	106 (3)	12 (15)	20 (5)	-13 (5)	131 (2)	166 (2)	168 (2)
H(1)	1618 (57)	1113 (48)	297 (13)	0	281 (25)	0	178 (5)	201 (4)	277 (5)
H(2)	1260 (48)	2263 (69)	222 (8)	767 (50)	16 (17)	-28 (19)	173 (4)	194 (4)	312 (5)
H(3)	1459 (54)	2121 (70)	249 (9)	-764 (54)	-13 (18)	-17 (20)	186 (4)	204 (4)	309 (5)

with $\mathrm{H}(1)$ statistically distributed around these twofold axes was not successful since the thermal parameter β_{33} of $\mathbf{H}(1)$ became negative. A refinement with fixed β_{33} resulted in a position of $\mathrm{H}(1)$ very near the twofold axis while the values of R and R_{w} increased a little. The model best describing the observed intensities of RbHOXY thus seems to have the hydrogen atoms $\mathrm{H}(1)$ symmetrically situated between the oxydiacetate residues.

The coherent scattering amplitudes used were $\vec{b}_{\mathrm{Rb}}=$ $0.703(7), \bar{b}_{\mathrm{K}}=0.370, \bar{b}_{\mathrm{O}}=0.580, \bar{b}_{\mathrm{C}}=0.665$, and $\bar{b}_{\mathrm{H}}=$ $-0.374 \times 10^{-12} \mathrm{~cm}$ (Bacon, The Neutron Diffraction Commission, 1972). As the scattering amplitude for Rb was changed from $\dot{b}_{\mathrm{Rb}}=0.81 \cdot 10^{-12} \mathrm{~cm}$ in the tabulation issued in 1969 (The Neutron Diffraction Commission, 1969) to $\vec{b}_{\mathrm{Rb}}=0.71 \cdot 10^{-12} \mathrm{~cm}$ in the tabulation of 1972 the value of this amplitude was included as a variable parameter in the refinement.

Table 4. Observed and calculated structure factors for KHOXY
In each group the running index $l,\left|F_{0}\right| \times 100$, and $\left|F_{\mathrm{c}}\right| \times 100$ are given.

景品

C

Table 5. Observed and calculated structure factors for RbHOXY
In each group the running index $l,\left|F_{o}\right| \times 100$, and $\left|F_{c}\right| \times 100$ are given. An asterisk denotes a reflection with zeıo weight.

The parameters obtained in the last cycles of refinement are given in Tables 2 and 3. Observed and calculated structure factors are listed in Tables 4 and 5. The program system used has been briefly described by Oskarsson (1973).

The heavy-atom structures

Both neutron diffraction studies have confirmed the structures previously found by X-ray diffraction. The structures are shown in Figs. 1 and 2. In KHOXY the hydrogen oxydiacetate chains run parallel to [201] and in RbHOXY parallel to \mathbf{c}. The oxydiacetate residue is planar in both compounds. All the residues are parallel in KHOXY but in RbHOXY there are two perpendicular sets of parallel planes. Selected interatomic distances and angles are given in Tables 6 and 7 and some dihedral angles within the oxydiacetate residues in Table 8.

The alkali metal ion has seven oxygen neighbours in KHOXY forming a pentagonal bipyramid (Fig. 1 and

Table 6. The nearest neighbour oxygen atoms around the alkali metal ion

The superscripts indicate the transformations applied to the x, y, z values given in Table 2. KHOXY: (i) $1+x, \frac{1}{2}-y,-\frac{1}{2}+z$; (ii) $\bar{x}, \bar{y}, \bar{z}$; (iii) $\bar{x},-\frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, \bar{y}, \bar{z} ;$ (v) $x, \frac{1}{2}-y, \frac{1}{2}+z$. RBHOXY: (i) $x, \frac{1}{2}-y, \frac{1}{4}-z$; (ii) $\frac{1}{2}-x, y,-\frac{1}{4}-z$; (iii) $\frac{1}{y}, x, z$; (iv) $y,-\frac{1}{2}+x, \frac{1}{4}+z$.

KHOXY	
$\mathrm{K}-\mathrm{O}(1)$	2.748 (3) \AA
$\mathrm{K}-\mathrm{O}(2)$	2.798 (2)
$\mathrm{K}-\mathrm{O}\left(2^{\text {i }}\right.$)	2.754 (3)
$\mathrm{K}-\mathrm{O}\left(3^{\text {iii }}\right.$)	2.767 (3)
$\mathrm{K}-\mathrm{O}(4)$	2.711 (3)
$\mathrm{K}-\mathrm{O}\left(4^{\mathrm{iv}}\right)$	2.693 (2)
$\mathrm{K}-\mathrm{O}\left(5^{*}\right)$	2.935 (3)

RbHOXY

$\mathrm{Rb}-\mathrm{O}(1)$	$3.006(1) \AA$
$\mathrm{Rb}-\mathrm{O}(2)$	$3.175(2)$
$\mathrm{Rb}-\mathrm{O}\left(2^{\text {iii }}\right)$	$3.087(2)$
$\mathrm{Rb}-\mathrm{O}\left(3^{\text {iv }}\right)$	$2.932(2)$

Table 6). The oxygen atom $\mathrm{O}\left(5^{\vee}\right)$ cannot be regarded as coordinated since the distance $\mathrm{K}-\mathrm{O}\left(5^{v}\right), 2 \cdot 935$ (3) \AA, is longer than the distance $\mathrm{K}-\mathrm{H}\left(4^{\mathrm{V}}\right), 2 \cdot 875$ (4) \AA. In RbHOXY the rubidium ion is surrounded by six oxygen atoms forming a distorted octahedron and by two oxygen atoms $\mathrm{O}(2)$ outside two adjacent triangular

Fig. 1. A stereoscopic pair of drawings showing the content of a unit-cell of KHOXY. The c axis points towards the reader, a to the right, and b upwards.

Table 7. Selected interatomic distances and angles in the oxydiacetate residue
For superscripts, see legend to Table 6.

(a) Distances	KHOXY	RbHOXY
$\mathrm{O}(1)-\mathrm{C}(1)$	$1 \cdot 407$ (2) \AA	$1 \cdot 410$ (2) \AA
$\mathrm{O}(1)-\mathrm{C}(3)$	1.404 (2)	
$\mathrm{C}(1)-\mathrm{C}(2)$	1.522 (2)	1.510 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.511 (2)	
$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 230$ (2)	$1 \cdot 219$ (2)
$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 221$ (2)	
$\mathrm{C}(2)-\mathrm{O}(3)$	$1 \cdot 275$ (2)	$1 \cdot 289$ (2)
$\mathrm{C}(4)-\mathrm{O}(5)$	1.294 (2)	
$\mathrm{O}(1)-\mathrm{O}(2)$	2.661 (2)	$2 \cdot 659$ (2)
$\mathrm{O}(1)-\mathrm{O}(4)$	2.661 (2)	
$\mathrm{C}(1)-\mathrm{H}(2)$	1.090 (3)	1.095 (4)
$\mathrm{C}(1)-\mathrm{H}(3)$	1.091 (3)	1.091 (4)
$\mathrm{C}(3)-\mathrm{H}(4)$	1.093 (3)	
$\mathrm{C}(3)-\mathrm{H}(5)$	1.093 (3)	
(b) Angles		
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(3), \mathrm{C}\left(1^{1}\right)$	$112.08(12)^{\circ}$	$110.64(16)^{\circ}$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$110 \cdot 64$ (10)	$110 \cdot 18$ (12)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$110 \cdot 11$ (11)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	120.81 (10)	122.02 (11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	121.84 (11)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	112.93 (11)	$112 \cdot 17$ (12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(5)$	113.37 (11)	
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(3)$	126.25 (12)	$125 \cdot 80$ (13)
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{O}(5)$	124.79 (12)	
$\mathrm{C}(2)-\mathrm{O}(3) \cdots \mathrm{H}(1)$	117.27 (16)	116.09 (13)
$\mathrm{C}(4)-\mathrm{O}(5)--\mathrm{H}\left(1^{1}\right)$	111.51 (18)	
$\mathrm{H}(2)-\mathrm{C}(1)-\mathrm{H}(3)$	107.98 (31)	$107 \cdot 87$ (32)
$\mathrm{H}(4)-\mathrm{C}(3)-\mathrm{H}(5)$	$108 \cdot 15$ (32)	

faces of this polyhedron (Fig. 2). The latter atoms are not coordinated since the distance $\mathrm{Rb} \cdot \mathrm{H}(1), 3 \cdot 111$ (3) \AA, is shorter than $\mathrm{Rb}-\mathrm{O}(2), 3 \cdot 175$ (2) \AA.

The two oxydiacetate residues and the hydrogen bonds are shown in Fig. 3. The agreement within each

Table 8. Some dihedral angles in the oxydiacetate residues

	KHOXY	RbHOXY
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$178 \cdot 23(13)^{\circ}$	$179 \cdot 09(14)^{\circ}$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)$	$169.99(12)$	
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(2)$	$61 \cdot 26(24)$	$57.56(29)$
$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(5)$	$68 \cdot 32(25)$	
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(3)$	$55 \cdot 61(25)$	$59.31(28)$
$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(4)$	$49.09(26)$	

pair of independent determinations (X-ray and neutron) of the oxydiacetate geometry is very satisfactory, as has been shown in half-normal probability plots in a separate communication (Albertsson, Grenthe \& Herbertsson, 1973b). There are two independent ligand halves in KHOXY. The agreement between their corresponding bond lengths and bond angles is also very good (Table 7) which further corroborates the correctness of the structure determination. A probability plot shows, however, that the two halves are not completely equal. There is a minor change in conformation between them. The nonhydrogen atoms are coplanar in the ligand half containing the carboxyl group $\mathrm{O}(2) \mathrm{C}(2) \mathrm{O}(3)$ but in the other ligand half the ether oxygen atom is not located in the carboxyl plane. The carboxyl group is twisted about 7° around the $\mathrm{C}-\mathrm{C}$ bond [Table 8 and Fig. 4(a)]. All the non-hydrogen atoms in the oxydiacetate residue in RbHOXY are coplanar.

In both structures the anisotropic thermal parameters $\beta_{i j}$ determined for the heavy atoms are in general smaller than those determined in the X-ray diffraction studies. The probability plots indicate that the X-ray and neutron analyses are fairly accurate and that only

Fig. 2. A stereoscopic pair of drawings showing the content of a unit-cell of RbHOXY.
small systematic errors could have been introduced in the scaling of the data sets and in the corrections for absorption and extinction. Hence, we may ascribe the difference in the thermal parameters to a systematic error in the X -ray studies resulting from bonding effects (Coppens, 1968).

(a)

(b)

Fig. 3. The oxydiacetate residues and the hydrogen bonds. The thermal ellipsoids are scaled to include 50% probability. (a) KHOXY; (b) RbHOXY.

The methylene groups

The $\mathrm{C}-\mathrm{H}$ bond lengths are the same in the two compounds (Table 7). The mean value is 1.092 (1) \AA in KHOXY and 1.093 (3) \AA in RbHOXY. The corresponding principal axes of the thermal ellipsoids for the hydrogen atoms are all of about the same length. The long axes are perpendicular to the line $C(2)-C(4)$ in KHOXY and $\mathrm{C}(2)-\mathrm{C}\left(2^{i}\right)$ in RbHOXY but their angles with the $\mathrm{C}-\mathrm{H}$ bond directions are in all cases about 70°. No simple depiction of the thermal vibrations has been found but one component might be a libration of the oxydiacetate residues around axes parallel to the lines through the carboxyl carbon atoms since the thermal ellipsoids of all the oxydiacetate atoms in both compounds have their long principal axes perpendicular to this direction.

We have estimated the amplitude of the motion of each hydrogen atom relative to the carbon atom by calculating the r.m.s. quantities $\left[R_{\mathrm{C}-\mathrm{H}}^{2}(\mathrm{H})-R_{\mathrm{C}-\mathrm{H}}^{2}(\mathrm{C})\right]^{1 / 2}$. $R_{\mathrm{C}-\mathrm{H}}$ is the r.m.s. component of the total thermal displacement in the direction of the $\mathrm{C}-\mathrm{H}$ bond. The results are given in Table 9. The mean value in KHOXY is $0.101 \AA$ and in RbHOXY $0.087 \AA$. If we assume simple harmonic motion of the hydrogen atoms the amplitudes correspond to the $\mathrm{C}-\mathrm{H}$ stretching frequencies 1600 and $2200 \mathrm{~cm}^{-1}$, respectively. These

(b)

Fig. 4. The conformation of each ligand half around its $\mathrm{C}-\mathrm{C}$ bond. The thermal ellipsoids are scaled to include 50% probability. (a) KHOXY; (b) RbHOXY.
va'ues are somewhat low compared to the value 2900 cm^{-1} found in the infrared spectra of the compounds but they are of the right order of magnitude. The amplitude should have been $0.076 \AA$ to give the frequency $2900 \mathrm{~cm}^{-1}$. In view of the approximations involved in our calculations we conclude that the thermal parameters of the methylene hydrogen atoms are physically reasonable. As a consequence we can assume that this will be true also for the thermal parameters of the acid hydrogen atoms.

Table 9. The root-mean-square components of thermal displacement along the $\mathrm{C}-\mathrm{H}$ bonds in the methylene groups

KHOXY	$R_{\text {C- }}(\mathrm{H})$	$R_{\text {C- }}(\mathrm{C})$	$\left[R_{\mathrm{C}-\mathrm{H}}^{2}(\mathrm{H})-R_{\mathrm{C}-\mathrm{H}}^{2}(\mathrm{C})\right]^{1 / 2}$
$\mathrm{C}(1)-\mathrm{H}(2)$	$0 \cdot 177$ (4) \AA	0.148 (2) \AA	0.098 (8) \AA
$\mathrm{C}(1)-\mathrm{H}(3)$	$0 \cdot 170$ (4)	0.135 (2)	$0 \cdot 104$ (8)
$\mathrm{C}(3)-\mathrm{H}(4)$	$0 \cdot 162$ (4)	$0 \cdot 126$ (2)	$0 \cdot 102$ (8)
$\mathrm{C}(3)-\mathrm{H}(5)$	$0 \cdot 175$ (4)	$0 \cdot 143$ (2)	$0 \cdot 101$ (8)
RbHOXY			
	$\mathrm{R}_{\mathrm{CH}-\mathrm{H}}(\mathrm{H})$	$R_{\text {C-H }}(\mathrm{C})$	$\left[R_{\text {C- }}^{2}(\mathrm{H})-R_{\mathrm{C}-\mathrm{H}}^{2}(\mathrm{C})\right]^{1 / 2}$
$\mathrm{C}(1)-\mathrm{H}(2)$	0.203 (4) \AA	0.185 (2) \AA	0.084 (8) \AA
$\mathrm{C}(1)-\mathrm{H}(3)$	$0 \cdot 209$ (4)	$0 \cdot 189$ (2)	$0 \cdot 090$ (8)

The hydrogen bonds

Geometric data for the hydrogen bonds are given in Table 10. In KHOXY the oxygen-oxygen distance is 2.476 (2) \AA. The bond is asymmetric but with a long covalent $\mathrm{O}-\mathrm{H}$ bond distance, $1 \cdot 152$ (3) \AA. There is no indication of a disordered hydrogen arrangement. Some other short asymmetric hydrogen bonds with long $\mathrm{O}-\mathrm{H}$ distances have been found in neutron diffraction studies of sulphonic and nitranilic acid hydrates containing the aquo-oxonium $\left(\mathrm{H}_{5} \mathrm{O}_{2}^{+}\right)$and diaquo-oxonium $\left(\mathrm{H}_{7} \mathrm{O}_{3}^{+}\right)$ions. Data for these bonds are also included in Table 10. There is no obvious correlation between the distances $\mathrm{O}-\mathrm{H}$ and $\mathrm{O} \cdots \mathrm{O}$. The asymmetric hydrogen bond in KHOXY causes a small difference between the two single bonded $\mathrm{C}-\mathrm{O}$ distances: $\mathrm{C}(2)-\mathrm{O}(3)$ is 0.019 (3) \AA shorter than $\mathrm{C}(4)-$ $\mathrm{O}(5)$ (Table 7).

The hydrogen bond in RbHOXY is symmetric and 0.027 (4) \AA shorter than the bond in KHOXY. The oxygen-oxygen distance is 2.449 (3) \AA. The angle $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ is about the same as in KHOXY, i.e., the hydrogen bond is almost linear in both compounds. The acceptor and donor angles $\mathrm{C}-\mathrm{O} \cdots \mathrm{H}$ differ by
$5 \cdot 8(3)^{\circ}$ in KHOXY but, owing to the symmetry, are equal in RbHOXY (Table 7).

Fig. 3 shows that the thermal ellipsoid describing the total motion of $\mathrm{H}(1)$ in RbHOXY is strongly prolate, approximately in the direction of the bond. This is not the case for $\mathrm{H}(1)$ in KHOXY. The intensities from RbHOXY are best accounted for by a model with $\mathrm{H}(1)$ located on twofold axes between the oxydiacetate residues but this fact does not exclude a disordered arrangement with half-hydrogen atoms on each side of the axes resulting in a prolate 'thermal' ellipsoid.

To choose between these two possibilities we may estimate the motion of the hydrogen atom relative to the motion of the oxydiacetate residue approximated by the motion of the hydrogen bonded oxygen atoms and compare the amplitudes thus obtained with spectroscopic evidence. The amplitudes of the relative motion can of course be calculated from the differences in mean square displacements as was done above for the $\mathrm{C}-\mathrm{H}$ stretching vibrations but we have in this case calculated the ellipsoids defined by $\beta_{i j}(\mathrm{H})-\beta_{i j}(\mathrm{O})$, where O is $\mathrm{O}(5)$ in KHOXY and $\mathrm{O}(3)$ in RbHOXY (Sequeira, Berkebile \& Hamilton, 1967). The advantage of this method is that both the amplitudes and the directions of the difference motion are obtained.

The ellipsoids describing the total motion and those describing the difference motion of the hydrogen atoms $H(1)$ are compared in Table 11. To have all the three roots of the secular equation for the difference ellipsoid in KHOXY positive we had to change the values of $\Delta \beta_{13}$ and $\Delta \beta_{23}$ by about 2σ. This indicates that the approximations are rather crude but we accept the result since the mean square amplitudes along the principal axes obtained are almost equal to the difference in mean square displacements of $\mathrm{H}(1)$ and $\mathrm{O}(5)$ in the same directions.

The two hydrogen bonds with the difference ellipsoids representing the hydrogen atoms are shown in Fig. 5. Both ellipsoids are prolate in the direction of the bond and it is reasonable to relate the amplitude in this direction with the asymmetric stretching frequency of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond. For the short symmetric and almost symmetric hydrogen bonds in RbHOXY and KHOXY, respectively, values around $1000 \mathrm{~cm}^{-1}$ would be expected (Speakman, 1972). At $-175^{\circ} \mathrm{C}$ the frequencies found in the infrared spectra are $800(50)$ cm^{-1} in KHOXY and $600(50) \mathrm{cm}^{-1}$ in RbHOXY (Lindgren, 1973).

Table 10. The hydrogen bond in RbHOXY and KHOXY and short, asymmetric hydrogen bonds in sulphonic and nitranilic acid hydrates

	O $\cdots \mathrm{O}$	O-H	$\mathrm{O} \cdots \mathrm{H}$	O-H \cdots O
RbHOXY	2.449 (3) \AA	1.226 (2) \AA	1.226 (2) \AA	175.04 (44) ${ }^{\circ}$
KHOXY	2.476 (2)	$1 \cdot 152$ (3)	1.328 (3)	174.24 (27)
$\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{SO}_{3} \mathrm{H} .4 \mathrm{H}_{2} \mathrm{O}^{\text {a }}$	2.436 (2)	$1 \cdot 128$ (3)	1.310 (3)	175.0
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COOH}(\mathrm{OH}) \mathrm{SO}_{3} \mathrm{H} 3 . \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	$2 \cdot 44$ (1)	$1 \cdot 10$ (1)	1.34 (1)	180
$\mathrm{C}_{6}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{OH})_{2} \mathrm{O}_{2} .6 \mathrm{H}_{2} \mathrm{O}^{\text {c }}$	$2 \cdot 45$	$1 \cdot 18$	1.27	180

Table 11. The thermal ellipsoids for the acid hydrogen atoms
The root-mean-square amplitudes along the principal axes and the angles these make with the hydrogen bond.

	Total motion		Difference motion	
Compound	Amplitude	Direction	Amplitude	Direction
KHOXY	$0.166(4) \AA$	$67(4)^{\circ}$	$0.040(17) \AA$	$82(4)^{c}$
	$0.198(3)$	$45(5)$	$0.100(06)$	$114(5)$
	$0.227(4)$	$128(5)$	$0.153(05)$	$154(5)$
RbHOXY	$0.178(5)$	$110(2)$	$0.026(33)$	90
	$0.201(4)$	90	$0.93(09)$	$85(3)$
	$0.277(5)$	$160(2)$	$0.208(07)$	$175(3)$

In order to estimate the energy difference between the ground and first excited state in KHOXY from the diffraction data we assume the the hydrogen atom $\mathrm{H}(1)$ has a simple harmonic motion in a single potentialenergy well. The mean square displacement along the longest principal axis of the difference ellipsoid then gives $700 \mathrm{~cm}^{-1}$. Compared to the frequency found at

Fig. 5. Thermal motion in the hydrogen bonds. The motion of the oxygen atoms has been subtracted from that of the hydrogen atoms. The drawings are stereoscopic. The ellipsoids enclose 50% probability. (a) KHOXY; (b) RbHOXY.
$-175^{\circ} \mathrm{C}$ this is a very satisfactory value. If we also assume simple harmonic motion of frequency 600 cm^{-1} for the hydrogen atom $\mathrm{H}(1)$ in RbHOXY we must ascribe the difference between the calculated and observed mean square amplitudes along the bond $\left(0.015 \AA^{2}\right)$ to a static disorder of the hydrogen atom in RbHOXY . This results in a model with half-hydrogen atoms located $0 \cdot 12 \AA$ from the twofold axis, each undergoing harmonic vibration with an r.m.s. amplitude of $0.17 \AA$. Hence, this model turns out to be unrealistic as the first excited level is above the barrier between the two potential-energy wells. The frequency must be $1200 \mathrm{~cm}^{-1}$ before the barrier reaches the energy of the first vibrational state and much higher to give a tiue disordered arrangement. Such a frequency is not in agreement with the spectroscopic evidence. We conclude that in the short symmetric hydrogen bond in RbHOXY the hydrogen atoms vibrates anharmonically in a broad, single, and symmetric potentialenergy well.

One should notice the close agreement between this result and the result obtained for the symmetric hydrogen bond in potassium hydrogen bis(acetylsalicylate) in the neutron diffraction study by Sequeira, Berkebile \& Hamilton (1967). The two difference ellipsoids have the same orientation with respect to the bond and the lengths of the principal axes are mutually equal.

The two short principal axes of the difference ellipsoids may be related to the OH bending vibrations. The shortest axes correspond to the bending out of the carboxyl plane. The r.m.s. amplitudes are very small, about $0.04 \AA$, but the errors involved are so large that the amplitudes are still within 3σ of the amplitudes calculated from the infrared frequencies ($1200 \mathrm{~cm}^{-1}$ in KHOXY, $1230 \mathrm{~cm}^{-1}$ in RbHOXY). For the bending in the carboxyl plane the amplitudes correspond to frequencies of about $1800 \mathrm{~cm}^{-1}$.

To obtain additional information of the hydrogen bond systems in KHOXY and RbHOXY, infrared spectra of these two compounds and of their deuterated counterparts are now being investigated at various temperatures. A neutron diffraction study of the deuterated rubidium compound has also been started.

Dr R. Tellgren has been of great help in the data collection. Dr J.-O. Lundgren kindly provided the data on the sulphonic and nitranilic acid hydrates and Dr J. Lindgren the analyses of the infrared spectra. We are indebted to all three for enlightening discussions. This work has been supported by the Swedish Natural Science Research Council.

References

Albertsson, J., Grenthe, I. \& Herbertsson, H. (1973a). Acta Cryst. B29, 1855-1860.
Albertsson, J., Grenthe, I. \& Herbertsson, H. (1973b). Acta Cryst. B29, 2839-2844.

Bacon, G. E., The Neutron Diffraction Commission (1972). Acta Cryst. A28, 357-358.

Coppens, P. (1968). Acta Cryst. B24, 1272-1274.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A 26, 71-83.
Ibers, J. A. (1964). J. Chem. Phys. 40, 402-404.
Lindgren, J. (1973). Private communication.
Lundgren, J. -O. \& Tellgren, R. (1973). To be published.
McGaw, B. L. \& Ibers, J. A. (1963). J. Chem. Phys. 39, 2677-2684.
Oskarsson, \AA. (1973). Acta Cryst. B29, 1747-1751.

Sequeira, A., Berkebile, C. A. \& Hamilton, W. C. (1967). J. Mol. Struct. 1, 283-294.

Speakman, J. C. (1972). Structure and Bonding, Vol. 12, pp. 141-199. Berlin: Springer-Verlag.
The Neutron Diffraction Commission (1969). Acta Cryst. A 25, 391-392.
Williams, J. M. \& Peterson, S. W. (1969). Acta Cryst. A 25, S113-S 114.
Williams, J. M., Peterson, S. W. \& Levy, H. A. (1972). Abstracts ACA Spring Conference, Albuquerque.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1973). B29, 2760

The Structure of Strychnine Sulfonic Acid Tetrahydrate

By Doddahalli S. SakeGowda, L.Cartz and S. Natarajan
Materials Science Division, Department of Mechanical Engineering, Marquette University, 1515 West Wisconsin Avenue, Milwaukee, Wisconsin 53233, U.S.A.

(Received 25 May 1973; accepted 2 July 1973)
Strychnine sulphonic acid tetrahydrate, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{SO}_{3} .4 \mathrm{H}_{2} \mathrm{O}$, crystallizes in space group $P 2_{1} 2_{1} 2_{1}$ with $a=14.007$ (4), $b=20.379$ (5), $c=7.441$ (3) $\AA, Z=4$. The crystal data were collected on a General Electric single-crystal diffractometer. The structure* was solved by direct methods with the cosine values of the structure invariants. Refinement by a block-diagonal least-squares procedure resulted in a final R of 7.9% for 1388 observed reflections. Hydrogen atoms were located in a difference synthesis. The molecules are held together by hydrogen bonds between water molecules and sulfur-oxygens. The strychnine molecule is compared in thres of its derivatives.

Introduction

Several isomeric sulfonic acids of strychnine and of various strychnine derivatives have been reported by Leuchs and his collaborators (Leuchs \& Weber, 1909; Leuchs \& Rauch, 1914; Leuchs \& Schwaebel, 1914). Strychnine sulfonic acids are produced by bubbling sulfur dioxide into a suspension of strychnine and manganese dioxide in water (Edward, 1972). The position of the sulfonic acid group in these compounds is not known so far.

The structure of the strychnine molecule was established on chemical grounds by the independent work of Robinson \& Stephen (1948) and Woodward \& Brehm (1948). The molecular configuration favored by Robinson and Woodward was confirmed by X-ray methods by Bokhoven, Schoone \& Bijvoet (1951), and Robertson \& Beevers (1950). The first group used the isomorphous replacement method with strychnine sulfate and selenate pentahydrates and the second used strychnine hydrobromide dihydrate but the hydrogen atoms were not located. The structure of strychnine sulfonic acid tetrahydrate was solved by direct methods

[^1]with structure invariants. The molecular configuration given in Fig. 1 shows the numbering of atoms and ring designations. The hydrogen atoms are omitted from the diagrams but are given the same numbers as the atoms to which they are bonded. Wherever two hydrogen atoms are bonded to the same atom, they are indicated by the atom number followed by A or B. Oxygen of a water molecule is indicated by $\mathrm{O}(W)$ and oxygen bonded to sulfur by $\mathrm{O}(\mathrm{S})$.

The structure is particularly interesting in that the position of attachment of the sulfonic acid group is at a tertiary rather than the expected secondary carbon atom adjacent to nitrogen. The method of formation of the compound, based on its structure, would seem to be via a ring opening followed by a ring closure reaction of the ether ring as is known to occur in the formation of a number of other derivatives of strychnine (Manske, 1965).

Experimental

Crystals of strychnine sulfonic acid tetrahydrate were grown from a methanol/water solution, and are needleshaped and colorless. A crystal with dimensions of about $0 \cdot 10 \times 0 \cdot 10 \times 0.15 \mathrm{~mm}$ was used for data collection. X-ray measurements were carried out on a General Electric single-crystal diffractometer. The crystal was

[^0]: * Estimated standard deviations referring to the last significant digits are given in parentheses.

[^1]: * The structure was solved at 'The Workshop on the Use of Structure Invariants in Phase Determination'. Medical Foundation of Buffalo and SUNY/Buffalo, July 10-30, 1972.

